Lecture 12: Viscous effects and phase separation hinetics Linear non-equilibrium thermodynamics. · Local thermodynamic equilibrium. · Gradients in intensive variables, cause currents & fluxes of their conjugate variable. current density hinetic coefficients cture 12: Viscous effects and phase separation
near non-equilibrium thermodynamics.
Local thermodynamic equilibrium.
Gradients in intensive variables, cause current
variable. convent fersity.
Phenomenological lows: $\frac{A}{d$ Ple thermodynamic driving forces. Microscopic time reversibility: Lij=Lji. (Onsager recipracal relations) $\frac{\partial s}{\partial t}$ = - $\nabla \cdot \frac{\partial s}{\partial s}$ + σ entropy production. Js
今 entropy density entropy
convent density 5) (consequence of second law ⁺ imposing it locally) Last lecture we only discussed energy and particle conservation. entropy density
 $0\ge0$ (consequence of seconds)

ast lecture we only discussed
 $\frac{\partial P}{\partial t} + \nabla \cdot \frac{\partial P}{\partial t} = 0$ or $\frac{\partial P}{\partial t} = 0$ xaw + cmposing it kocally)

Unergy and particle conservations
 $L_{PP} \nabla(-\frac{\mu}{T}) + L_{PE} \nabla(\frac{1}{T})$ ast le dure we only discussed
 $\frac{\partial P}{\partial t} + \nabla \cdot \frac{\partial P}{\partial \rho} = 0$
 $\frac{\partial C}{\partial t} + \nabla \cdot \frac{\partial P}{\partial \rho} = 0$ $L_{\epsilon \rho} \nabla (\cdot \frac{\mu}{\rho}) + L_{\epsilon \epsilon} \nabla (\frac{L}{\tau}).$ We implicitly assumed the absence of viscous effects, or fluid flow. We implicitly assumed the absence of uscous effects, or fluid flow.
Yo this lecture, we will include such effects consistent with 1st & 2nd law. First, we will focus on the first law of thermodynamics. Gonsider n⁻component mixture
3k: mass density of component k.
d C C 200 PK : mass density of component k. $\frac{d}{dt} \int d\vec{r} g \hat{l} = \int \frac{\partial \hat{f}}{\partial t} dV$

 \bigodot

$$
\int_{V} d\vec{r} \frac{\partial e_{k}}{\partial t} = -\int_{\Omega} \vec{S} \cdot (e_{k} \vec{v}_{k}) = -\int_{\Omega} \vec{r} \cdot \nabla \cdot (e_{k} \vec{v}_{k}) \text{ value for arbitrary } V.
$$
\n
$$
\Rightarrow \int_{V} \frac{\partial e_{k}}{\partial t} = -\nabla \cdot (e_{k} \vec{v}_{k}) \text{ the number of numbers } V.
$$
\n
$$
\Rightarrow \int_{V} \frac{\partial e_{k}}{\partial t} = -\nabla \cdot (e_{k} \vec{v}_{k}) \text{ the number of numbers } V.
$$
\n
$$
\Rightarrow \int_{V} \frac{\partial e_{k}}{\partial t} = -\nabla \cdot (e_{k} \vec{v}_{k}) \text{ the number of numbers } V.
$$
\n
$$
\Rightarrow \int_{V} \frac{\partial e_{k}}{\partial t} = -\nabla \cdot (e_{k} \vec{v}_{k}) \text{ the number of numbers } V.
$$
\n
$$
\Rightarrow \int_{V} \frac{\partial e_{k}}{\partial t} = -\nabla \cdot (e_{k} \vec{v}_{k}) \text{ the number of numbers of numbers } V.
$$
\n
$$
\Rightarrow \int_{V} \frac{\partial e_{k}}{\partial t} = -\nabla \cdot (e_{k} \vec{v}_{k}) \text{ the number of numbers of numbers } V.
$$
\n
$$
\Rightarrow \int_{V} \frac{\partial e_{k}}{\partial t} = -\nabla \cdot (e_{k} \vec{v}_{k}) \text{ the number of numbers of numbers } V.
$$
\n
$$
\Rightarrow \int_{V} \frac{\partial e_{k}}{\partial t} = -\nabla \cdot \vec{v} \text{ the number of terms of the values of } V.
$$
\n
$$
\int_{V} \frac{\partial e_{k}}{\partial t} = -\nabla \cdot \vec{v} \text{ the number of terms of the values of } V.
$$
\n
$$
\int_{V} \frac{\partial e_{k}}{\partial t} = -\nabla \cdot \vec{v} \text{ the number of terms of the values of } V.
$$
\n
$$
\int_{V} \frac{\partial e_{k}}{\partial t} = -\nabla \cdot \vec{v} \text{ the number of terms of the values of } V.
$$
\n
$$
\int_{V} \frac{\partial e_{k}}{\partial t} = -\nabla \cdot \vec{v} \text{ the number of terms of the values of } V.
$$

Finally, we have the conservation of energy.
\n
$$
\frac{\partial \rho}{\partial t} = -\nabla \cdot \frac{\partial}{\partial t}
$$
\n
$$
\frac{\partial \rho}{\partial t} = -\nabla \cdot \frac{\partial}{\partial t}
$$
\n
$$
\frac{\partial \rho}{\partial t} = -\nabla \cdot \frac{\partial}{\partial t}
$$
\n
$$
\frac{\partial \rho}{\partial t} = -\nabla \cdot \frac{\partial}{\partial t}
$$
\n
$$
\frac{\partial \rho}{\partial t} = \nabla \cdot (\frac{\rho}{2} \cdot \vec{\sigma}) + \frac{\rho}{2} \cdot \nabla \cdot \vec{\sigma} + \frac{\rho}{2} \cdot \frac{\rho}{2} \cdot \vec{\sigma} + \frac{\rho}{2}
$$

We decompose:
$$
\frac{p}{2} = pT + T
$$

\n $k_{\text{reduced}} = \frac{p}{2}$
\n k_{reduced}
\n $\frac{p}{2} = pT + T$
\n k_{reduced}
\n $\frac{p}{2} = \frac{pT + T}{3}$
\n $\frac{pT}{Dt} = -\nabla \cdot \frac{q}{d} = p \nabla \cdot \vec{v} - T$
\n $\frac{q}{Dt} = -\nabla \cdot \frac{q}{d} = \frac{q \nabla \cdot \vec{v} - T}{\frac{q}{2}} \cdot \nabla \vec{v} + \frac{1}{2} \vec{d} \vec{d} \cdot \vec{r}$
\n $\frac{q \nabla \cdot \vec{v}}{\nabla t} = \frac{Dq}{Dt} - p \nabla \vec{v} - \frac{1}{2} \nabla \cdot \vec{v} + \frac{1}{2} \vec{d} \vec{d} \cdot \vec{r}$
\n $\frac{p \nabla \cdot \vec{v}}{\nabla t} = \frac{Dq}{Dt} - \frac{1}{2} \nabla \cdot \vec{r}$
\n $\frac{p \nabla \cdot \vec{v}}{\nabla t} = \frac{P \nabla \cdot \vec{v}}{\nabla t} = \frac{1}{2} \nabla \cdot \vec{r} \times \frac{1}{2} \nabla \cdot \vec{r}$
\n $\frac{p \nabla \cdot \vec{v}}{\nabla t} = \frac{1}{2} \nabla \cdot \vec{r} \times \frac{1}{2} \nabla \cdot \vec{r}$
\nNow *s* is specific entropy.
\nNow *s* is specific entropy.
\n $\frac{\partial g_{s}}{\partial t} = -\nabla \cdot \vec{r} \times f_{s,tot} + \nabla \cdot \vec{r} \times \vec{r} \times \vec{r}$
\n $\frac{\partial g_{s}}{\partial t} = -\nabla \cdot \vec{r} \times f_{s,tot} + \nabla \cdot \vec{r} \times \vec{r} \times \vec{r}$
\n $\frac{\partial g_{s}}{\partial t} = -\nabla \cdot \vec{r} \times f_{s,tot} + \nabla \cdot$

$$
\int_{0}^{3} s^{2} = \int_{0}^{3} \int_{0}^{3} s^{2} = \int_{0}^{3} \int_{4}^{3} s^{2} = \int_{0}^{3} \int_{0}^{3} \int_{0
$$

We conclude that:
\n
$$
\frac{1}{41}
$$
 = $2.3 \pm \sqrt{(\frac{1}{T}) - \sum_{k=1}^{6} L_{ik} (\sqrt{2\frac{1}{T} - \frac{F_k}{T}})$ (but to coupling with $\sqrt{3}$)
\n $\frac{1}{3}i = L_{ig} \sqrt{(\frac{1}{T}) - \sum_{k=1}^{6} L_{ik} (\sqrt{2\frac{11}{T} - \frac{F_k}{T}})$
\n $\frac{1}{10}i_{\beta} = -\frac{L}{T} (\sqrt{3}i)_{\alpha\beta} = -\frac{L}{2T} (\lambda_{\alpha}u_{\beta} + \lambda_{\beta}v_{\alpha} - \frac{2}{3}\delta_{\alpha\beta}(\sqrt{3}))$
\n $T = -l(\sqrt{3}i) / T$.
\nNote all coefficients are scalars ref between ω and ω and ω is a real
\nSystem $\frac{1}{3}$ \int triangle are less than $\frac{1}{3}$ \int triangle is a real
\n $2.4 \pm 10i$.
\nDue to the Caarite principle, we have more one that $\delta_{\alpha}(\omega)$ is a real
\n $\frac{1}{4}e^{-\frac{1}{4}}\theta$.
\n20.11 $\frac{1}{4}e^{-\frac{1}{4}}\theta$.
\n21.2 $\frac{1}{4}e^{-\frac{1}{4}}\theta$.
\n22.2 $\frac{1}{4}e^{-\frac{1}{4}}\theta$.
\n23.3 $\frac{1}{4}e^{-\frac{1}{4}}\theta$.
\n24.4 $\frac{1}{4}e^{-\frac{1}{4}}\theta$.
\n25.5 $\frac{1}{4}e^{-\frac{1}{4}}\theta$.
\n26.6 $\frac{1}{4}e^{-\frac{1}{4}}\theta$.
\n27. $\frac{1}{4}e^{-\frac{1}{4}}\theta$.
\n28. $\frac{Dv}{dt} = -\nabla_{\beta} + \eta_{\beta} \nabla^2 \vec{v} + (\frac{1}{3}\eta_{\beta} + \eta_{\beta}) \nabla (\vec{v} \cdot \vec{$

⑰ Spinodal decomposition Recall typical phase diagram of a system that can undergo condensation: & $\begin{array}{ccc}\n\underline{h} & \underline{h} \\
\hline\n\end{array}$ system that can us
Phinodal
inadal spinodal
falle purely differently
falle purely differently nucleation decomposition. To describe spinodal decomposition , we take purely diffusive iso thermal dynamics : $\frac{\partial f}{\partial y}$ = D.A. $[g \nabla \beta \mu]$ blets interpret lets interpret
this as the chemical potential.

 i c 4 rinsic

G] Dynamical density functional theory

= $D\nabla \cdot \left[8 \nabla \frac{S\beta F}{S\alpha F} \right]$

Yets take a square gradient approximation:
\n
$$
F[q] = \int d\vec{r} \left[\oint (q(\vec{r})) + k |\nabla q(\vec{r})|^2 \right] = k \text{ constant.}
$$
\n
$$
\int d\vec{r} = \int d\vec{r} \left[\oint (q(\vec{r},t)) - 2ik \nabla^2 q(\vec{r},t) \right]
$$
\n
$$
\Rightarrow \int \frac{\partial q}{\partial t} = D \nabla \cdot \left[q(\vec{r},t) \frac{\partial^2 f(q(\vec{r},t))}{\partial q(\vec{r},t)} \nabla q(\vec{r},t) - 2k q(\vec{r},t) \nabla (\nabla^2 q(\vec{r},t)) \right]
$$
\n
$$
\int d\vec{r} = D \nabla \cdot \left[q(\vec{r},t) \frac{\partial^2 f(q(\vec{r},t))}{\partial q(\vec{r},t)} \nabla q(\vec{r},t) - 2k q(\vec{r},t) \nabla (\nabla^2 q(\vec{r},t)) \right]
$$
\n
$$
\int d\vec{r} = \int d\vec{r} \cdot d\vec{r} = \int d\vec{r} \cdot d\vec{r} \int d\vec{r} \cdot d\vec{r} = \int d\vec{r} \cdot d\vec{r} \int d\vec{r} \cdot d\vec{r} \int d\vec{r} \cdot d\vec{r} = \int d\vec{r} \cdot d\vec{r} \int d\vec{r} \cdot d\vec{r} = \int d\vec{r} \cdot d\vec{r} \int d\vec{r} \cdot d\vec{r} = \int d\vec{r} \cdot d\vec{r} \int d\vec{r} \cdot d\vec{r} = \int d\vec{r} \cdot d\vec{r} \int d\vec{r} \cdot d\vec{r} = \int d\vec{r} \cdot d\vec{r} \int d\vec{r} \cdot d\vec{r} = \int d\vec{r} \cdot d\vec{r} \int d\vec{r} = \int d\vec{r} \cdot d\vec{r
$$

⑭

Within spinodal: fluctuations amplitude, the
\n*Q* (h, 1, 1, 2, 0) for some
$$
l
$$
.)

\nQuartile, spinosh, R (2, 0) $\frac{d}{dR} \left(\frac{1}{t} = 0 \Rightarrow \frac{1}{t} = \frac{-(\frac{1}{4} \cdot \frac{1}{t} \cdot 0)}{4 \cdot t} \right)$

\nQ

\ng

\nQ

\n

Not that: "Free very 33 gwin 2p20 [5] cmpt;ton.
\n1. 4
$$
\mu
$$
 compothable form model $\int \int e^{x} \cos \theta \, d\theta$
\n $\Rightarrow 2\frac{1}{4} \pi R^3 \left(\frac{N_1}{\frac{1}{3}\pi R^3} \right) \Delta \mu + 4\pi R^2 \gamma = \frac{4}{3} \pi R^3 \gamma \Delta \mu + 4\pi R^2 \gamma$
\n $\Rightarrow \frac{5}{9} \cdot \frac{d}{d} \sin(3\pi/4) \frac{d}{dx} \frac$